362 research outputs found

    Assessment of the feasible CTA windows for efficient spacing with energy-neutral CDO

    Get PDF
    Continuous descent operations (CDO) with con- trolled times of arrival (CTA) at one or several metering fixes could enable environmentally friendly procedures at the same time that terminal airspace capacity is not compromised. This paper focuses on CTA updates once the descent has been already initiated, assessing the feasible CTA window (and associated fuel consumption) of CDO requiring neither thrust nor speed-brake usage along the whole descent (i.e. energy modulation through elevator control is used to achieve different times of arrival at the metering fixes). A multiphase optimal control problem is formulated and solved by means of numerical methods. The minimum and maximum times of arrival at the initial approach fix (IAF) and final approach point (FAP) of an hypothetical scenario are computed for an Airbus A320 descent and starting from a wide range of initial conditions. Results show CTA windows up to 4 minutes at the IAF and 70 seconds at the FAP. It has been also found that the feasible CTA window is affected by many factors, such as a previous CTA or the position of the top of descent. Moreover, minimum fuel trajectories almost correspond to those trajectories that minimise the time of arrival at the metering fix for the given initial conditionPeer ReviewedPostprint (published version

    Contributions to the Optimisation of aircraft noise abatement procedures

    Get PDF
    Tot i que en les últimes dècades la reducció del soroll emès pels avions ha estat substancial, el seu impacte a la població ubicada a prop dels aeroports és un problema que encara persisteix. Contenir el soroll generat per les operacions d'aeronaus, tot assumint al mateix temps la creixent demanda de vols, és un dels principals desafiaments a que s'enfronten les autoritats aeroportuàries, els proveïdors de serveis per a la navegació aèria i els operadors de les aeronaus. A part de millorar l'aerodinàmica o les emissions sonores de les aeronaus, l'impacte acústic de les seves operacions es pot reduir també gràcies a la definició de nous procediments de vol més òptims. Aquests procediments s'anomenen generalment Procediments d'Atenuació de Soroll (PAS) i poden incloure rutes preferencials de vol (a fi d'evitar les zones poblades) i també perfils de vol verticals optimitzats. Els procediments actuals per a la reducció de soroll estan molt lluny de ser els òptims. En general, la seva optimització no és possible a causa de les limitacions d'avui en dia en els mètodes de navegació, els equips d'aviònica i la complexitat present en alguns espais aeris. D'altra banda, molts PAS s'han dissenyat de forma manual per un grup d'experts i amb l'ajuda de diverses iteracions. Tot i això, en els propers anys s'esperen nous sistemes d'aviònica i conceptes de gestió del trànsit aeri que permetin millorar el disseny d'aquests procediments, fent que siguin més flexibles. En els pocs casos on s'optimitzen PAS, se sol utilitzar una mètrica acústica en l'elaboració de les diferents funcions objectiu i per tant, no es tenen en compte les molèsties sonores reals. La molèstia és un concepte subjectiu, complexe i que depèn del context en que s'usa i la seva integració en l'optimització de trajectòries segueix essent un aspecte a estudiar.La present tesi doctoral es basa en el fet que en el futur serà possible definir trajectòries més flexibles i precises. D'aquesta manera es permetrà la definició de procediments de vol òptims des d'un punt de vista de molèsties acústiques. Així doncs, es considera una situació en que aquest tipus de procediments poden ser dissenyats de forma automàtica o semi-automàtica per un sistema expert basat en tècniques d'optimització i de raonament aproximat. Això serviria com una eina de presa de decisions per planificadors de l'espai aeri i dissenyadors de procediments. En aquest treball es desenvolupa una eina completa pel càlcul de PAS òptims. Això inclou un conjunt de models no lineals que tinguin en compte la dinàmica de les aeronaus, les limitacions de la trajectòria i les funcions objectiu. La molèstia del soroll es modela utilitzant tècniques de lògica difusa en funció del nivell màxim de so percebut, l'hora del dia i el tipus de zona a sobrevolar. Llavors, s'identifica i es formula formalment el problema com a un problema de control òptim multi-criteri. Per resoldre'l es proposa un mètode de transcripció directa per tal de transformar-lo en un problema de programació no lineal. A continuació s'avaluen una sèrie de tècniques d'optimització multi-objectiu i entre elles es destaca el mètode d'escalarització, el més utilitzat en la literatura. No obstant això, s'exploren diverses tècniques alternatives que permeten superar certs inconvenients que l'escalarització presenta. En aquest context, es presenten i proven tècniques d'optimització lexicogràfica, jeràrquica, igualitària (o min-max) i per objectius. D'aquest anàlisi es desprenen certes conclusions que permeten aprofitar les millors característiques de cada tècnica i formar finalment una tècnica composta d'optimització multi-objectiu. Aquesta última estratègia s'aplica amb èxit a un escenari real i complex, on s'optimitzen les sortides cap a l'Est de la pista 02 de l'aeroport de Girona. En aquest exemple, dos tipus diferents d'aeronaus volant a diferents períodes del dia són simulats obtenint, conseqüentment, diferents trajectòries òptimes.Aunque en las últimas décadas la reducción del ruido emitido por los aviones ha sido sustancial, su impacto en la población ubicada cerca de los aeropuertos es un problema persistente. Contener este ruido, asumiendo al mismo tiempo la creciente demanda de vuelos, es uno de los principales desafíos a que se enfrentan las autoridades aeroportuarias, los proveedores de servicios para la navegación y los operadores. Aparte de mejorar la aerodinámica o las emisiones sonoras de las aeronaves, su impacto acústico se puede reducir también gracias a la definición de nuevos procedimientos de vuelo optimizados. Éstos, se denominan generalmente Procedimientos de Atenuación de Ruido (PAR) y pueden incluir rutas preferenciales de vuelo (a fin de evitar las zonas pobladas) y también perfiles de vuelo optimizados.Los procedimientos actuales para la reducción de ruido están muy lejos de ser los óptimos. En general, su optimización no es posible debido a las limitaciones de hoy en día en los métodos de navegación, los equipos de aviónica y la complejidad presente en algunos espacios aéreos. Por otra parte, muchos PAR se han diseñado de forma manual por un grupo de expertos y con la ayuda de varias iteraciones. Sin embargo, en los próximos años se esperan nuevos sistemas de aviónica y conceptos de gestión del tráfico aéreo que permitan mejorar el diseño de estos procedimientos, haciendo que sean más flexibles. En los pocos casos donde se optimizan PAR, se suele utilizar una métrica acústica en la elaboración de las diferentes funciones objetivo y por lo tanto, no se tienen en cuenta las molestias sonoras reales. La molestia es un concepto subjetivo, complejo y que depende del contexto en que se usa y su integración en la optimización de trayectorias sigue siendo un aspecto a estudiar. La presente tesis doctoral se basa en el hecho de que en el futuro será posible definir trayectorias más flexibles y precisas. De esta manera se permitirá la definición de procedimientos de vuelo óptimos desde un punto de vista de molestias acústicas. Se considera una situación en que este tipo de procedimientos pueden ser diseñados de forma automática o semi-automática por un sistema experto basado en técnicas de optimización y de razonamiento aproximado. Esto serviría como una herramienta de toma de decisiones para planificadores del espacio aéreo y diseñadores de procedimientos.En este trabajo se desarrolla una herramienta completa para el cálculo de PAR óptimos. Esto incluye un conjunto de modelos no lineales que tengan en cuenta la dinámica de las aeronaves, las limitaciones de la trayectoria y las funciones objetivo. La molestia del ruido se modela utilizando técnicas de lógica difusa en función del nivel máximo de sonido percibido, la hora del día y el tipo de zona a sobrevolar. Entonces, se identifica y se formula formalmente el problema como un problema de control óptimo multi-criterio. Para resolverlo se propone un método de transcripción directa para transformarlo en un problema de programación no lineal. A continuación se evalúan una serie de técnicas de optimización multi-objetivo y entre ellas se destaca el método de escalarización, el más utilizado en la literatura. Sin embargo, se exploran diversas técnicas alternativas que permiten superar ciertos inconvenientes que la escalarización presenta. En este contexto, se presentan y prueban técnicas de optimización lexicográfica, jerárquica, igualitaria (o min-max) y por objetivos. De este análisis se desprenden ciertas conclusiones que permiten aprovechar las mejores características de cada técnica y formar finalmente una técnica compuesta de optimización multi-objetivo. Esta última estrategia se aplica con éxito en un escenario real y complejo, donde se optimizan las salidas hacia el Este de la pista 02 del aeropuerto de Girona. En este ejemplo, dos tipos diferentes de aeronaves volando a diferentes periodos del día son simulados obteniendo, consecuentemente, diferentes trayectorias óptimas.Despite the substantial reduction of the emitted aircraft noise in the last decades, the noise impact on communities located near airports is a problem that still lingers. Containing the sound generated by aircraft operations, while meeting the increasing demand for aircraft transportation, is one of the major challenges that airport authorities, air traffic service providers and aircraft operators may deal with. Aircraft noise can be reduced by improving the aerodynamics of the aircraft, the engine noise emissions but also in designing new optimised flight procedures. These procedures, are generally called Noise Abatement Procedures (NAP) and may include preferential routings (in order to avoid populated areas) and also schedule optimised vertical flight path profiles. Present noise abatement procedures are far from being optimal in regards to minimising noise nuisances. In general, their optimisation is not possible due to the limitations of navigation methods, current avionic equipments and the complexity present at some terminal airspaces. Moreover, NAP are often designed manually by a group of experts and several iterations are needed. However, in the forthcoming years, new avionic systems and new Air Traffic Management concepts are expected to significantly improve the design of flight procedures. This will make them more flexible, and therefore will allow them to be more environmental friendly. Furthermore, in the few cases where NAP are optimised, an acoustical metric is usually used when building up the different optimisation functions. Therefore, the actual noise annoyance is not taken into account in the optimisation process. The annoyance is a subjective, complex and context-dependent concept. Even if sophisticated noise annoyance models are already available today, their integration into an trajectory optimisation framework is still something to be further explored. This dissertation is mainly focused on the fact that those precise and more flexible trajectories will enable the definition of optimal flight procedures regarding the noise annoyance impact, especially in the arrival and departure phases of flights. In addition, one can conceive a situation where these kinds of procedures can be designed automatically or semi-automatically by an expert system, based on optimisation techniques and approximate reasoning. This would serve as a decision making tool for airspace planners and procedure designers.A complete framework for computing optimal NAP is developed in this work. This includes a set of nonlinear models which take into account aircraft dynamics, trajectory constraints and objective functions. The noise annoyance is modelled by using fuzzy logic techniques in function of the perceived maximum sound level, the hour of the day and the type of over-flown zone. The problem tackled, formally identified and formulated as a multi-criteria optimal control problem, uses a direct transcription method to transform it into a Non Linear Programming problem. Then, an assessment of different multi-objective optimisation techniques is presented. Among these techniques, scalarisation methods are identified as the most widely used methodologies in the present day literature. Yet, in this dissertation several alternative techniques are explored in order to overcome some known drawbacks of this technique. In this context, lexicographic, hierarchical, egalitarian (or min-max) and goal optimisation strategies are presented and tested. From this analysis some conclusions arise allowing us to take advantage of the best features of each optimisation technique aimed at building a final compound multi-objective optimisation strategy. Finally, this strategy is applied successfully to a complex and real scenario, where the East departures of runway 02 at the airport of Girona (Catalonia, Spain) are optimised. Two aircraft types are simulated at different periods of the day obtaining different optimal trajectories.Postprint (published version

    Effects of speed reduction in climb, cruise and descent phases to generate linear holding at no extra fuel cost

    Get PDF
    Best paper Award in Trajectory Optimisation Track - ICRAT 2016Speed reduction strategies have proved to be useful to recover delay if air traffic flow management regulations are cancelled before initially planned. Considering that for short- haul flights the climb and descent phases usually account for a considerable percentage of the total trip distance, this paper extends previous works on speed reduction in cruise to the whole flight. A trajectory optimization software is used to compute the maximum airborne delay (or linear holding) that can be performed without extra fuel consumption if compared with the nominal flight. Three cases are studied: speed reduction only in cruise; speed reduction in the whole flight, but keeping the nominal cruise altitude; and speed reduction for the whole flight while also optimizing the cruise altitude to maximize delay. Three representative flights have been simulated, showing that the airborne delay increases significantly in the two last cases with nearly 3-fold time for short-haul flights and 2-fold for mid- hauls with the first case. Results also show that fuel and time are traded along different phases of flight in such a way the airborne delay is maximized while the total fuel burn is kept constant.Peer ReviewedAward-winningPostprint (published version

    Including linear holding in air traffic flow management for flexible delay handling

    Get PDF
    This paper introduces a strategy to include linear holding into air traffic flow management (ATFM) initiatives, together with the commonly used ground holding and airborne holding measures. In this way, ATFM performance can be improved when handling delay assignment with uncertainty. Firstly, a trajectory generation method is presented, aiming at computing, per flight, the maximum linear holding realizable using the same fuel as the original nominal flight. This information is assumed to be computed and shared by the different airlines and it is then used to build a network ATFM model to optimally assign ATFM delays, in the scope of trajectory based operations. Hence, the best distribution of delay is optimized at given positions along the flight trajectory (combining the three holding practices together) and taking into account the cost of delay, especially in the fuel consumption. The problem is formulated as a mixed integer linear programming and solved with a commercially-of-the-shelf solver. An illustrative example is given, showing that under the circumstance of capacity recovered ahead of schedule, including linear holding contributes to a notable delay reduction compared to the case where only ground and/or airborne holding apply.Peer ReviewedPostprint (published version

    Linear holding for airspace flow programs: a case study on delay absorption and recovery

    Get PDF
    This paper presents a method to introduce linear holding to flights affected by Airspace Flow Program (AFP) initiatives. Trajectories are optimized at their planning stage in such a way that the program performance is improved in terms of delay absorption before the congested area, and delay recovery at the destination airport. This recovery process is studied by comparing the case where the same fuel consumption is fixed as the nominal flight, with several cases where some extra fuel allowances are considered at the flight planning stage. The effects for AFP delayed flights are thoroughly discussed in a case study followed by a sensitivity analysis on possible influential factors. Results suggest that using the proposed method could partially recover part of the AFP delay, even with no extra fuel allowances (e.g., reducing 3.3 min of ground delay and 1.7 min of arrival delay for a typical short-haul flight). When extra fuel is allowed, however, the maximum delay recovery increases up to 10 min for the studied case, which also proves to be more cost-efficient than current operations, when flight speed is increased after experiencing all delay on groundPeer ReviewedPostprint (author's final draft

    Effects of linear holding for reducing additional flight delays without extra fuel consumption

    Get PDF
    This paper presents an approach to implement linear holding (LH) for flights initially subject to ground holding, in the context of Trajectory Based Operations. The aim is to neutralize additional delays raised from the lack of coordination between various traffic management initiatives (TMIs) and without incurring extra fuel consumption. Firstly, motivated from previous works on the features of LH to absorb delays airborne, a potential applicability of LH to compensate part of the fixed ground holding is proposed. Then, the dynamic adjustment of LH in response to TMIs-associated tactical delays is formulated as a multi-stage aircraft trajectory optimization problem, addressing both pre- and post-departure additional delays. Results suggest that additional delays of 25 mins in a typical case study can be totally recovered at no extra fuel cost. A notable extent of delay reduction observed from the computational experiments further supports the benefits of LH for reducing different combinations of additional delays without consuming extra fuel.Peer ReviewedPostprint (author's final draft

    Fuel-based flight inefficiency through the lens of different airlines and route characteristics A post-operational analysis for one day of traffic at the ECAC area.

    Get PDF
    In the light of the ambitious environmental targets for future air traffic management paradigms, there is a need in the enhancement of current (key) performance indicators, with the objective to facilitate the identification of different sources of environmental inefficiencies, and to enable large scale and systematic post-operational analyses. Based on a previously published methodological framework to compute fuel-based performance indicators, this paper aims at exploring these inefficiencies at different granularity of the results. For this purpose, a set of filters has been applied on a data-set of 24h of traffic within the ECAC (European Civil Aviation Conference) area, encompassing different airspace users categories, route length and flight frequencies. The results show that the carriers prone to low-cost business models have, on average, the highest value of total fuel inefficiency in absolute terms with a median around 530 kg (17%); compared to full-service carriers with a median around 432 kg (20%); observing as well that relative fuel inefficiency significantly drops as the stage length of the routes increases. Moreover, results reveal that the busiest the routes are, the higher fuel inefficiencies they accrue. For routes with less than 5 departures per day, the fuel inefficiency accounts for 19.1% in relative terms, if compared with the total fuel burnt; whereas for the routes from the category between 12 and 20 daily departures the relative fuel inefficiency rises to 22.6%. These figures are obtained when the reference trajectory used to derive fuel inefficiency is a full free route trajectory at maximum range operations and without considering en-route charges. The paper also explores other reference trajectories, constrained to the airway network in force and/or considering the (estimated) cost index chosen by the airspace users. It is acknowledged, however, that a larger data-set needs to be considered in the future to generalise the validity of the obtained results.Peer ReviewedPostprint (author's final draft

    Assessing the impact of relaxing cruise operations with a reduction of the minimum rate of climb and/or step climb heights

    Get PDF
    A compromise solution to increase flight efficiency in cruise, but without penalising capacity (or even safety), would be perhaps to remove (or relax) the minimum rate of climb (ROC) constraint and/or to reduce the height of the step climbs in cruise. In this paper, the benefits (in terms of total operating costs) and the associated impact on the air traffic management (ATM) of such “relaxed cruise” operations are quantified for a representative medium-haul aircraft under different scenarios, by means of an in-house trajectory optimisation software. Results show that by reducing the minimum ROC from 500 to 300 ftmin-1, whilst keeping the step climb height according to current reduced vertical separation minima (RVSM) standard would give a good compromise between cost savings and impact on the ATM.Peer ReviewedPostprint (published version

    Time and Energy Managed Operations (TEMO): Cessna Citation II Flight Trials

    Get PDF
    From 9-26 October 2015 the Netherlands Aerospace Centre (NLR) in cooperation with Delft University of Technology (DUT) has executed Clean Sky flight trials with the Cessna Citation II research aircraft. The trials consisted of several descents and approaches at the Eelde airport near Groningen, demonstrating the TEMO (Time and Energy Managed Operations) concept developed in the Clean Sky Joint Technology Initiative research programme as part of the Systems for Green Operations (SGO) Integrated Technology Demonstrator. A TEMO descent aims to achieve an energy-managed idle-thrust continuous descent operation (CDO) while satisfying ATC time constraints, to maintain runway throughput. An optimal descent plan is calculated with an advanced on-board real-time aircraft trajectory optimisation algorithm considering forecasted weather and aircraft performance. The optimised descent plan was executed using the speed-on-elevator mode of an experimental Fly-By-Wire (FBW) system connected to the pitch servo motor of the Cessna Citation II aircraft. Several TEMO conceptual variants have been flown. It has been demonstrated that the TEMO concept enables arrival with timing errors below 10 seconds. The project was realised with the support of CONCORDE partners Universitat Politècnica de Catalunya (UPC) and PildoLabs from Barcelona, and the Royal Netherlands Meteorological Institute (KNMI).Peer ReviewedPostprint (published version

    Flight testing Time and Energy Managed Operations (TEMO)

    Get PDF
    The expected growth in air traffic combined with an increased public concern for the environment, have forced legislators to rethink the current air traffic system design. The current air traffic system operates at its capacity limits and is expected to lead to increased delays if traffic levels grow even further. Both in the United States and Europe, research projects have been initiated to develop the future Air Transportation System (ATS) to address capacity, and environmental, safety and economic issues. To address the environmental issues during descent and approach, a novel Continuous Descent Operations (CDO) concept, named Time and Energy Managed Operations (TEMO), has been developed co-sponsored by the Clean Sky Joint Undertaking. It uses energy principles to reduce fuel burn, gaseous emissions and noise nuisance whilst maintaining runway capacity. Different from other CDO concepts, TEMO optimizes the descent by using energy management to achieve a continuous engine-idle descent, while satisfying time constraints on both the Initial Approach Fix (IAF) and the runway threshold. As such, TEMO uses timemetering at two control points to facilitate flow management and arrival spacing. TEMO is in line with SESAR step 2 capabilities, since it proposes 4D trajectory management and is aimed at providing significant environmental benefits in the arrival phase without negatively affecting throughput, even in high density and peak-hour operations. In particular, TEMO addresses SESAR operational improvement (OI) TS-103: Controlled Time of Arrival (CTA) through use of datalink [1]. TEMO has been validated starting from initial performance batch studies at Technology Readiness Level (TRL) 3, up to Human-in-the-Loop studies in realistic environments using a moving base flight simulator at TRL 5 ([2]-[6]). In this paper the definition, preparation, performance and analysis of a flight test experiment is described with the objective to demonstrate the ability of the TEMO algorithm to provide accurate and safe aircraft guidance toward the Initial Approach Fix (IAF), and further down to the Stabilization Point (1000 ft AGL), to demonstrate the ability of the TEMO algorithm to meet absolute time requirements at IAF and/or runway threshold and to evaluate the performance of the system under test (e.g. fuel usage).Peer ReviewedPostprint (published version
    corecore